

TRINA SOLAR SHOWCASE WITH AFSIA

With

SAM OGUNNIYI

Thursday, 4th March 2021 10am GMT | 11am WAT | 2pm DXB

AFRICA SOLAR OUTLOOK 2021

A COUNTRY-BY-COUNTRY REVIEW OF THE STATUS OF SOLAR IN AFRICA

BROUGHT TO YOU BY

WITH THE SUPPORT OF

Download the report here

AFSIA ACTIVITIES HIGHLIGHTS

Webinar Solar for airports

Webinar

COVID

implications

for African

solar

APR-20

MAR-20

MAY-20

Launch of African solar projects data base

JUN-20

Webinar Solar in agriculture

JUL-20

Webinar **Technical** considerations PV+storage

NOV-20

DEC-20

AFSIA Solar Awards

OCT-20

Launch Annual **Outlook Report**

> Webinar Solar meets water

> > FEB-21

e-conference Solar for

APR-21

Webinar implications of

African mining

AfCFTA

Webinar **Innovative** e-conference financing for Green African Solar Hydrogen

Virtual Trade Mission DRC (french)

> MAY-21 JUN-21

Africa Energy Forum

World Future Energy Summit Abu Dhabi

JAN-21

Africa Energy Indaba

MAR-21

Global Energy & Utilities Digital Week

AUG-20

SEP-20

MEMBERS

FOUNDING MEMBERS

STRATEGIC MEMBERS

MEMBERS

TRINA SOLAR SHOWCASE WITH AFSIA

With

SAM OGUNNIYI

Thursday, 4th March 2021 10am GMT | 11am WAT | 2pm DXB


Sam Ogunniyi
Sales Manager West & Central Africa
Nigeria

- 15 years Commercial and Project Management experience spanning across FMCG, Telecom and Renewable Energy
- MTN Nigeria, Lumos Global, Jinko Solar, A4&T
- 1st Degree from University of Ibadan, Nigeria and Post Graduate Degree from Anglia Ruskin University, Cambridge, United Kingdom
- supporting developers and EPCs with PV modules in different application use, ranging from Utility projects to C&I, Irrigation and roof top installation

Optimizing BOS and LCOE cost with High Power Panels: RT Installers, MG and C&I Application

The World Leading PV And Smart Energy Total Solution Provider

Tier 1 company ranked as the

"Most Bankable Module Brand"

in Bloomberg New Energy Finance's (BNEF) Module Bankability

Report

Builds 40 Off-grid Solar Power Stations in Tibet Autonomous Region

State Key Laboratory of PV Science & Technology is established

Thailand factory starts operation

Launches Trina Energy IoT brand

2002

2012

2016

2018

1997

2006

2014

2017

2020

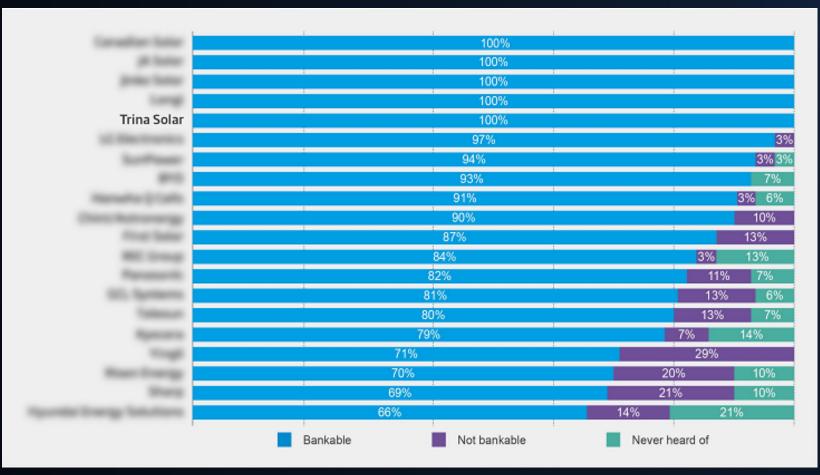
Trina Solar is

founded

Lists on the NYSE

Global Module Shipments No.1

Launches Trina's Million-Roof Plan


Issued first A-Shares on Shanghai Sci-Tech Innovation Board

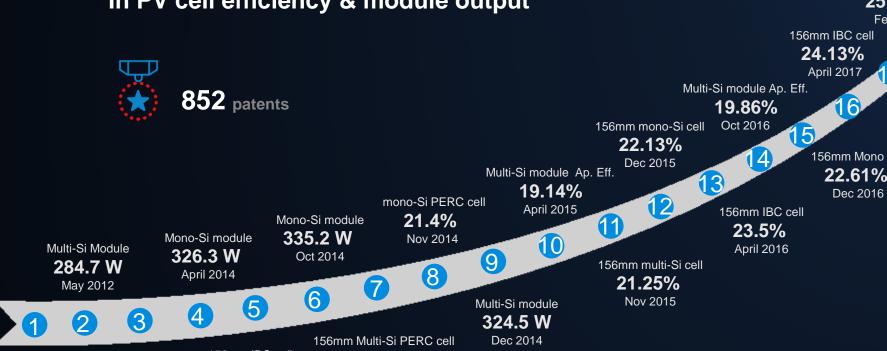
The most reliable Brand

BloombergNEF's PV module bankability results

"Top Bankable Module Supplier" 2016 -- 2020

Five times in a row

Source: BloombergNEF


Companies with an equal ranking are shown

The leader in technology

20 world records (2011-2020)

In PV cell efficiency & module output

N-mono-TOPCon cell

24.58%

May 2019

N-Cast-mono-TOPCon cell

23.22% Nov 2019

156mm IBC cell 25.04%

Feb 2018

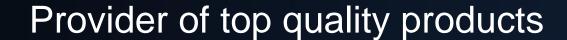
24.13%

April 2017

IBC module 410.5 W

Dec 2017

156mm Mono cell 22.61%


Multi-Si Module 274.3 W Sept 2011

2cm IBC cell 24.4% Feb 2014

156mm IBC cell 22.94% April 2014

20.76% Nov 2014

Trinasolar

370W

400W

460W

500W

550W

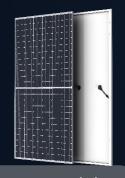
660W

ertex

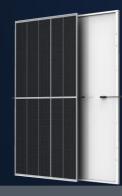
166mm Half cut

166mm Half cut

210mm Half cut

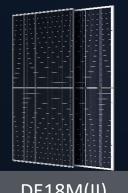

210mm Half cut


DE08M(II)

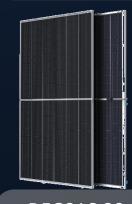

DE09

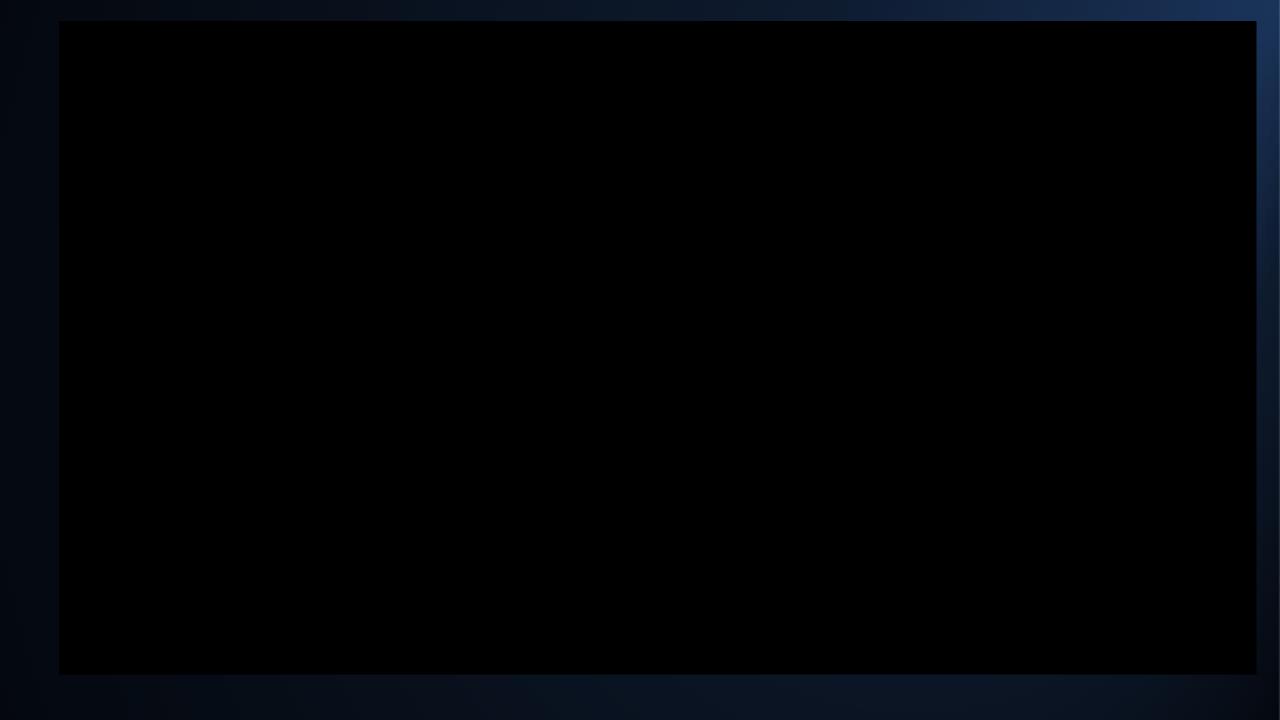
DE17M(II)

DE18M(II)


DE19

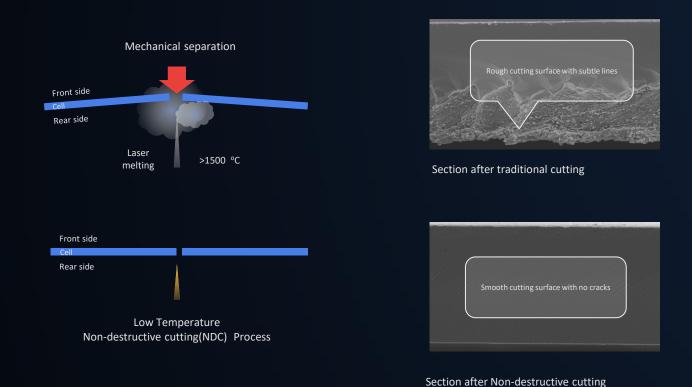
DE21

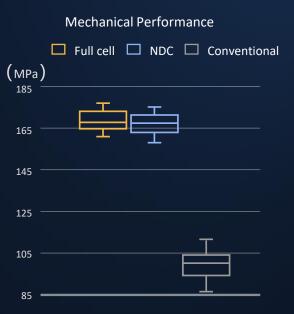

DEG17MC.20


DE18M(II)

DEG19C.20

DEG21C.20

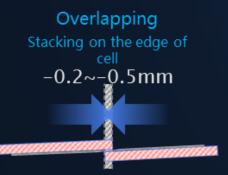


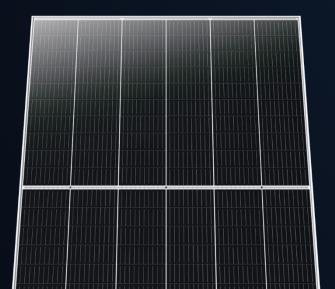


Non-destructive cutting(NDC)

nanical strength as a full cell

High quality cells to avoid micro cracks & hot spots


High-density interconnection


Same or better efficiencies than overlapping

Other modules

Risk of micro cracks in overlapped areas

Example: Trina Solar 600W efficiency is 21.2%.

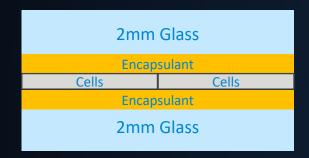
Competition module of 580W is 21.2%

Lighter modules than any comparable module

Ligiter structures

		Trin	Other modules		
		400W	550W		535W
	Module weight	21.0 kg	28.6 kg		28.9 kg
Backsheet	Power / weight	19.3 W/kg	19.2 W/kg	More power per kg	18.5 W/kg
	Weight / m2	10.92 kg/m2	10.96 kg/m2	Les weight per m2	11.42 kg/m2
	Module weight		32.6 kg		32.3 kg
Double glass	Power / weight		16.9 W/kg	More power per kg	16.7 W/kg
	Weight / m2		12.49 kg/m2	Les weight per m2	12.63 kg/m2

More power in each container provides savings in logistics

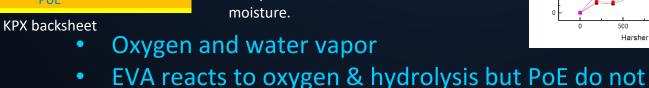

375kW 340 <300 320 330 308 ► Power fitting in a 40 ft container DE18M(II) DE17M(II) **DE19 DE09** 682 pieces / ct 620 pieces / ct 620 pieces / ct 936 pieces / ct Vertex Vertex S ertex

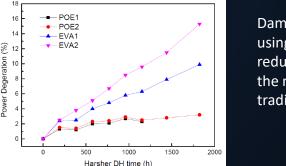
Products adapted to West Africa local climate conditions

Double glass

Double glass provides full insulation against humidity and chemicals.

Trina Solar double glass modules have been used for years in floating plants.


Backsheet with PoE



Trina Solar uses a best in class Kynar backsheet with a layer that minimizes humidity penetration.

In addition, modules uses PoE, an encapsulant which is not sensitive to

Damp heat test shows that using PoE as encapsulant reduces the degradation of the module compared with traditional EVA.

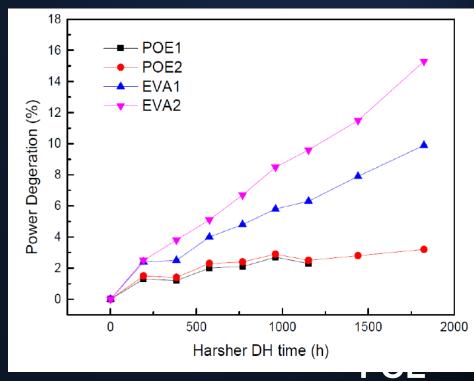
Critical Materials in Solar Panels: PoE (Poly Olefin Encapsulant) Vs EVA (Ethyl Vinyl Acetate)

On performing IEC-61215 Damp Heat Test and various other tests on EVA and POE based products to determine the module's ability to resist the effects of long-term moisture penetration, some major effects were realized.

Permeability:

Under high humidity high temperature conditions water vapor and oxygen enter the module through the backsheet, which agitates the permeability characteristics of the module.

EVA reacts with water vapor and hydrolyzes to acetic acid, whereas PoE does not react with vapor. This major factor is the reason for use of Dual glass modules with PoE+PoE design in these conditions.

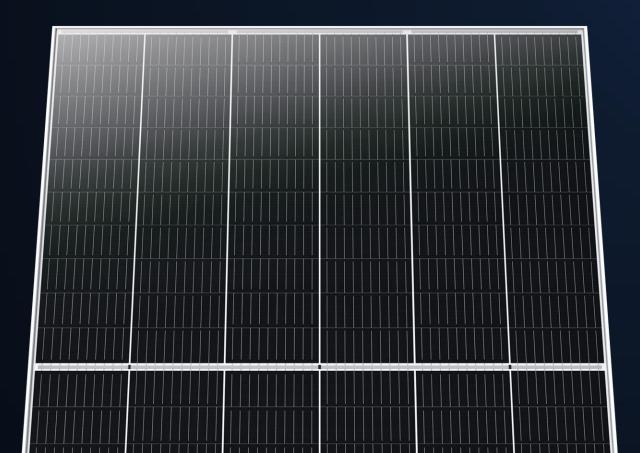

Degradation & Performance Characteristics

Acetic acid formed due to hydrolysis in EVA products, tend to corrode metal parts, producing lead acetate, resulting in solder strip blackening and excessive power degradation tampering the modules performance.

Thermal Stability:

Under harsher damp heat testing (85% humidity and 85°C temperature), it was determined that the finger grids on EVA based modules tend to loose their withholding properties and break away from module grid. This further leads to power degradation.

PoE products on the other hand have better damp heat resistance leading to better module output.



does not produce acetic acid on its own accord"

Low Module Voltage, High String Power

Higher current significantly reduces the number of strings

210mm Third cut 166mm Half cut 210mm Half cut DE08M(II) DE17M(II) DE18M(II) **DE09 DE19 DE21** 11.5 A 12.3 A 18.4 A Isc **String power** 12.5-13.8 kW 13.3-14.7 kW 20-22 kW Number of 106 100 66 strings Compatible current with Important savings Legacy 182 modules in BOS

Confidential

Vertex

Two options give better results in any project

Similar currents Best logistics Low weight Flexible configuration

More power per module Less strings & BOS savings 182

210

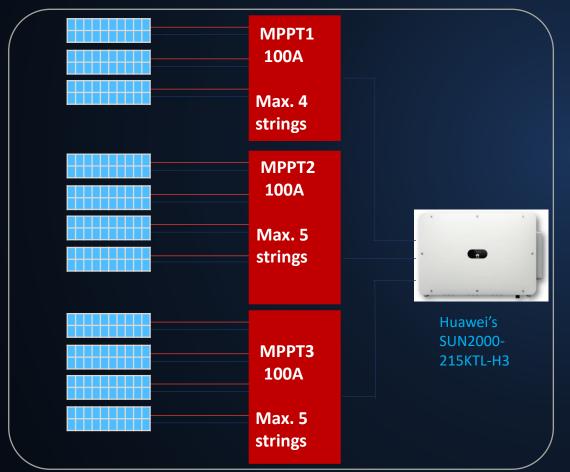
Optimum small roof and remote location

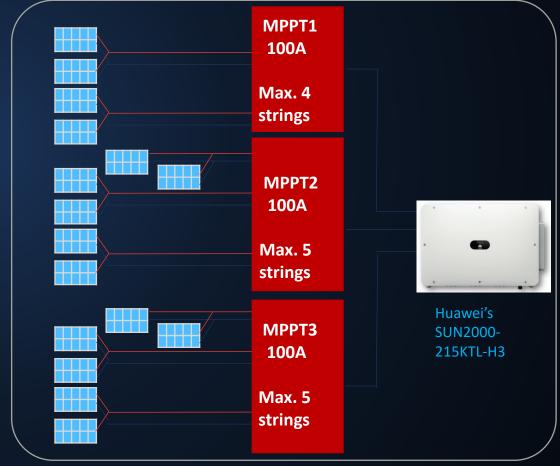
Optimum large roof or ground installation

Vertex half cut modules are compatible with current inverters and trackers

Inverters

Trackers


Please, check with us for any product not mentioned



Vertex half cut modules is optimum with one string per input

Vertex half cut 545W

182mm 530W modules

Total power: 244.97kW, 1.25x, 11 strings

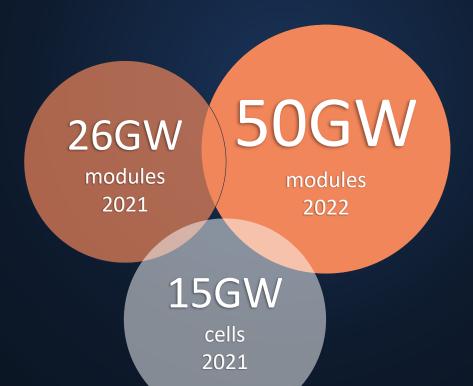
Total power: 244.4kW, 1.25x, 16 strings

BOS analysis of 550W Vertex PV system

	Module type	Reference Trina Solar VERTE		Diff.
	Power (W)	540	550	
BOS (¥/w)	Racking	0.279	0.253	-0.026
	Foundation	0.123	0.111	-0.012
	Cable	0.046	0.044	-0.002
	Combiner box, etc	0.015	0.011	-0.004
	Installation	0.137	0.131	-0.006
	Sum	0.8248	0.7741	-0.05
LCOE (¥/W)				-2 %

3rd party assessment

^{*}The result is highly dependent on the input assumptions, and should not be taken as a guidance for specific projects.


More experience than competition

Large manufacturing capacity

Secured material supply

1GW+

Delivered!!

Glass 85million m2

Wafers 2 billion ud.

Conclusion

Trinasolar

- Bankable
- 24 years and more than 60GW of experience
- Financially strong company traded in NYS and Shanghai stock exchange
- Superior R&D and module technology
- Most advanced manufacturing facilities
- Best quality processes
- Reliable supply of materials
- Local support in West Africa

Vertex

- Best technology
 - Highest power
 - NDC to avoid microcracks and hot spots
- Compatible with inverters and trackers
- Product adapted to local environment
 - · Double glass module
 - Backsheet with PoE+PoE
- Savings in the project
 - High power per string
 - More power per container
 - Reduced BOS and lower LCOE

Thanks for watching!

ogunniyi.sam@trinasolar.com ME@trinasolar.com Africa@Trinasolar.com

Africa Solar Industry Association

